Package: blaseRtemplates (via r-universe)

August 31, 2024
Title Generates a structured R project with custom templates.
Version 0.0.0.9210

Description This package generates an R project with customized
templates. It also packages bash scripts for blaserlab
collaborative git workflow.

License MIT + file LICENSE
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

URL https://github.com/blaserlab/blaseRtemplates,
https://blaserlab.github.io/blaseRtemplates/

BugReports https://github.com/blaserlab/blaseRtemplates/issues
Imports fs, gert, stringr, usethis, prompt, dplyr, gitcreds, renv,
withr, devtools, purrr, tibble, pak (>= 0.2.1), cli (>= 3.2.0),
rlang, rstudioapi, pkgcache, digest, readr, rjson
Suggests testthat (>=3.0.0)
Config/testthat/edition 3
Repository https://blaserlab.r-universe.dev
RemoteUrl https://github.com/blaserlab/blaseRtemplates
RemoteRef HEAD
RemoteSha 4654f891a09c¢8852638f4fb4b979b68bea6654ce

Contents

cache fun e
catch_blasertemplates_root
establish_new_bt
find_unlinked_packages L
fix_another_library L
get_all_deps

https://github.com/blaserlab/blaseRtemplates
https://blaserlab.github.io/blaseRtemplates/
https://github.com/blaserlab/blaseRtemplates/issues

2 cache_fun
get_new_library L e e e e 6
gitereds_Set 6
git_easy_branch L 7
git_push_all 7
git rewind_to L. e 8
git_safe_merge e e 8
git_update_branch. 9
hash_fun. e 9
hash_n_cache e 10
initialize_githubo 10
initialize_package e 11
initialize_project e 11
install_one_package 12
link_deps 13
link_one_new_package 13
project_data e 14
rec_get_deps e 15
regenerate_bt_configs e 15
regenerate_git_commands Lo 16
report_template_rmdo 16
TESEL_PrOMPL . . . o . v v vt e e e e e e e e e e e e e e 17
update_dependency_catalogo 17
update_package_catalog L 18
write_project_library_catalog 18

Index 19

cache_fun cache a single package

Description

cache a single package
Usage
cache_fun(
package,

cache_loc = fs::path(Sys.getenv("BLASERTEMPLATES_CACHE_ROOT"), "library"),

permissions

)

catch_blasertemplates_root 3

catch_blasertemplates_root
Make sure you are in a properly-formatted blaseRtemplates project.

Description

Make sure you are in a properly-formatted blaseRtemplates project.

Usage

catch_blasertemplates_root()

establish_new_bt Establish a New blaseRtemplates Installation

Description

This function sets up a directory structure that is designed to work well with blaseRtemplates func-
tions. It will create directories where indicated, write a standard .Rprofile document, and modify the
user .Renviron file to configure R properly. The function will not overwrite existing directories and
will fail when an existing installation is already present in the same location. The only modification
outside of the existing directory is to the .Renviron file. If you have existing configurations in your
.Renviron file, they will only be changed if they are conflicting. If this is problematic, then you
should archive your .Renviron file before running. The new .Renviron file will cause R to use the
new .Rprofile in the cache directory and skip existing user- and project-level .Rprofiles.

For the individual user: Identify the location for your blaseRtemplates cache and your R projects.
For convenience, these can be within the same parent directory. The cache will hold versioned
and hashed binary package files in the library directory. These are the actual instructions used by
R when you call up functions. The version/hash structure is tracked by your projects and allows
reproducibility. The user_project directory holds symlinks to the specific version/hash packages
being used. A new directory is created for each new project. The source directory is used by the
package installer, pak, to archive the source files for each package. You should rarely need to look in
there. The logs directory holds .Rhistory files. One is created for each R session you open. The .tsv
files catalog the entire collection of packages in your cache with their dependencies. The .Rprofile
is what sets up your R session to use the proper user_package directory, ensures you are working in
a valid project, generates startup messages and sets some helpful options.

This function will create 1 project, called baseproject, in the projects directory which will ensure
you are always operating in a project environment. Working outside of a project can have danger-
ous/unintended consequences.

For the system administrator: the directory structure will work equally well for a multiuser system
(e.g. rstudio server) with minor modifications. The .Rprofile generated by the function can be used
as Rprofile.site and will apply to all users of that R installation. Each user should have their own
project directories with a baseproject on the system. The .Renviron file should be modified for each
user to point to this directory and saved in the home directory. There should be a subdirectory

4 find_unlinked_packages

in user_projects with each user’s ID for their project libraries. Ownership should be given to the
user/group and permissions set accordingly, e.g. 755.

Upgrading R versions: since package binaries don’t work across minor version changes in R, e.g.
4.2 -> 4.3, you will have to create a new cache directory each time this changes.

Usage

establish_new_bt(cache_path, project_path)

Arguments
cache_path Path to the blaseRtemplates cache root. Should include the R major and minor
version numbers in the final directory. This and all intermediate directories will
be created.

project_path Path to the R projects directory. For convenience, can put this in the same parent
directory as cache_path, but not strictly necessary.

See Also

cli_alert create, copy, path_package, path, file_access, dir_1s, path_file str_detect,
str_replace proj_utils

Examples

Not run:
if(interactive()){
establish_new_bt(cache_path = "<some_directory>/r_4_2_cache”, project_path = "<some_directory>/projects"”)

3

End(Not run)

find_unlinked_packages
Find Unlinked Packages

Description

Find Unlinked Packages

Usage
find_unlinked_packages(lib_path)

fix_another_library 5

fix_another_library Fix a User-Project Library

Description

Sometimes, the user_project library can break. This can happen if there are failures in the upstream
install functions. Or if the links are deleted for some reason. If everything is broken, you may
need to repair the user project library. To do this, exit the project and enter a working project.
Delete the links in the offending user project library. Then run this function to relink. Use either
the library catalog file from the project itself, or if this is also corrupted with bad information, run
an older version that worked or a version from another project that worked. If you can identify the
problematic package in the course of these fixes, then you should probably delete it from your cache
entirely.

Usage

fix_another_library(file, dir)

Arguments

file The library catalog tsv file to read from.

dir The user project library to repair.

Value

Nothing

See Also

path_math, create, path, path_file read_delimpull

get_all_deps get all package dependencies

Description

get all package dependencies

Usage

get_all_deps(package)

6 gitcreds_set

get_new_library Get A New Project Library

Description

Use this to replace the current symlinked library with a new version. By default, the function will
link to the newest version of all packages available in the cache. Alternatively, identify another
project library catalog to replace the current version.

Usage

get_new_library(newest_or_file = "newest")

Arguments

newest_or_file Which set of packages to symlink, Default: *newest’

Value

Uninstalled packages hashes.

gitcreds_set Interactively Set Github PAT

Description
This wraps gitcreds::gitcreds_set() and adds a system call to edit the user global git config to set the
cache timeout to 1 billion seconds if running a Linux system.

Usage

gitcreds_set()

Value

nothing

See Also

gitcreds_get

git_easy_branch 7

git_easy_branch Easily Create or Switch Git Branches

Description

Supply this function with a branch name. If the branch exists it will switch to the branch. If not,
it will pull any changes from remote and then create the branch. Any uncommitted work will be
carried over to the new branch in the same state. Avoid repeatedly switching branches with work in
different states of completion since this may cause conflicts

Usage

git_easy_branch(branch)

Arguments

branch A character string with the branch name to create or switch to.

Value

nothing git_branch

git_push_all Push to All Remotes

Description

This uses gert to look up all active remotes and then runs gert::git_push() to each.

Usage

git_push_all()

Value

nothing

8 git_safe_merge

git_rewind_to Rewind Git History

Description

This function uses git revert to rewind history to a prior commit. First make sure all of your changes
have been committed. Then run gert::git_log() to identify the "good" commit you want to rewind to.
Supply this as the argument to this function. A new commit will be made with a helpful message.
Commit history is not changed so you can always rewind the rewind etc....

Usage

git_rewind_to(commit)

Arguments
commit Hash of the commit you want to rewind the state of your repository to. Requires
a minimum of 7 characters.
Value

a tibble with the new git commit log after rewinding

See Also

git_commit

git_safe_merge Safely Merge your Working Branch

Description

This function updates default branch (usually "main") from remote. This pulls in any changes from
other contributors. Then it merges the working branch into the upstream branch.

Usage

git_safe_merge(branch = NULL, upstream = "main")
Arguments

branch The working branch you wish to merge, Default: NULL

upstream The default upstream branch you wish to merge into, Default: NULL
Value

nothing

git_update_branch 9

See Also

git-default-branch git_branch,git_commit

git_update_branch Update a Working Git Branch

Description
This function updates a git branch via rebase from a default upstream branch (default is "main").
You can explicitly provide the names of your working branch and the default upstream branch.
Usage

git_update_branch(branch = NULL, upstream = "main")

Arguments

branch The working branch you wish to update, Default: NULL

upstream The default upstream branch you wish to update from, Default: NULL

Value

nothing

See Also

git-default-branch git_branch,git_stash

hash_fun Hash a single package

Description

Hash a single package

Usage

hash_fun(package)

10 initialize_github

hash_n_cache hash one or more functions and then cache them and update the cata-
logs. Default permissions are set to 777.

Description

hash one or more functions and then cache them and update the catalogs. Default permissions are
set to 777.

Usage

hash_n_cache(
lib_loc = .libPaths()[11,

cache_loc = fs::path(Sys.getenv("BLASERTEMPLATES_CACHE_ROOT"), "library"),
verbose = TRUE,

permissions = "777"

initialize_github Initialize A Project By Forking A Github Repo

Description

This function wraps usethis::create_from_github, making some useful default choices. Because this
function forks the project, git will set up the originator as an upstream remote. Using blaseRtem-
plates::git_push_all will push to both the originator and the collaborator’s github.

Usage

initialize_github(repo, dest = NULL, open = TRUE)

Arguments
repo The repo to clone. Must be in the form of github_user/repo_name. If private,
you must be a collaborator and have permission to fork the repo from the owner.
dest Destination directory. This directory will become the parent directory for the
project you are forking. If NULL, the default, it will put the project in the
directory defined by the usethis.destdir option. Set this in ~/.Rprofile.
open Whether to open the forked project, Default: TRUE
Value

nothing

initialize_package 11

initialize_package Initialize a Package Using a Standard Template

Description

This wraps usethis: :create_package() and adds a few additional templates.

Usage

initialize_package(
path,
fields = list(),
roxygen = TRUE,
check_name = TRUE,
rstudio = rstudioapi::isAvailable(),
open = rlang::is_interactive(),
fresh_install = FALSE,
path_to_cache_root = Sys.getenv("BLASERTEMPLATES_CACHE_ROOT")

Arguments
path path/name for the new package. It should include letters and "." only to be
CRAN-compliant.
fields named list of fields in addition to/overriding defaults for the DESCRIPTION
file, Default: list()
roxygen do you plan to use roxygen2 to document package?, Default: TRUE
check_name check if name is CRAN-compliant, Default: TRUE
rstudio makes an Rstudio project, default is true
open to open or not, Default: rlang::is_interactive()
See Also

isAvailable is_interactive use_template defer

initialize_project Create a package or project using a structured template

Description
These functions create an R project:
* create_project() creates a non-package project, i.e. a data analysis project

Both functions can be called on an existing project; you will be asked before any existing files are
changed.

This function is a modification of usethis::create_project

12 install_one_package

Usage

initialize_project(
path,
rstudio = rstudioapi::isAvailable(),
open = rlang::is_interactive(),
fresh_install = FALSE,
path_to_cache_root = Sys.getenv("BLASERTEMPLATES_CACHE_ROOT")

Arguments
path A path. If it exists, it is used. If it does not exist, it is created, provided that the
parent path exists.
rstudio If TRUE, calls use_rstudio() to make the new package or project into an RStu-
dio Project.
open If TRUE, activates the new project:
« If RStudio desktop, the package is opened in a new session.
* If on RStudio server, the current RStudio project is activated.
* Otherwise, the working directory and active project is changed.
Value

Path to the newly created project or package, invisibly.

install_one_package Install One Package

Description

Use this to install a new package. Choosing "new_or_update" will go to the package repository, get
the latest version of the software, install into your cache and link to your project library. Choosing
"link_from_cache" will get you the latest version in the cache Also, use this option with either
"which_version" or "which_hash" to install specific versions.

Usage
install_one_package(
package,
how = c("link_from_cache"”, "new_or_update”, "tarball”),

which_version = NULL,
which_hash = NULL

https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects

link_deps

Arguments

package

how

which_version

13

Package name or path to tarball. Prefix with "repoV" for github source packages
and "bioc::" for bioconductor.

"non

How to install the package, Default: c("link_from_cache", "new_or_update",
"tarball")

Package version to install, Default: NULL

which_hash Package hash to install, Default: NULL
Value
nothing
link_deps link package dependencies
Description

link package dependencies

Usage

link_deps(package)

link_one_new_package link one new package

Description

link one new package

Usage

link_one_new_package(package, version = NULL, hash = NULL)

14 project_data

project_data Activate Project Data

Description

Use this to update, install and/or load project data. Usual practice is to provide the path to a di-
rectory holding data package tarballs. This function will find the newest version, compare that to
the versions in the cache and used in the package and give you the newest version. Alternatively,
provide the path to a specific .tar.gz file to install and activate that one.

If a specific version is requested, i.e. a specific .tar.gz file, and this version is already cached, it will
be linked and not reinstalled. If for some reason there are multiple hashes with the same version
number (usually because a package was rebuilt without incrementing the version), then the latest
hash of that version will be linked.

This function now accepts multiple paths, i.e. multiple independent data packages, in the form of
a character vector of length >= 1. After deciding which version to install based on the inputs, the
function will load all of the data objects into a single environment called deconflicted.data. The
problem with loading multiple data packages into the same environment is that there may be name
conflicts and objects get overridden. The problem with keeping them in separate environments is
that they are difficult to specify and access. Here is how this function deals with these problems:

e If length(path) > 1, the function will require a vector for the argument deconflict_string
of the same length. The first element of deconflict_string will be added as a suffix to the
data object from the first package in path, etc. For example if the first value of the argument
deconflict_string is ".my.project.data”, then all objects in the package will be suffixed with
.my.project.data.

* Note that you will have to reference the object correctly in your code using the proper suffix.

* Also note that all of the elements of deconflict_string must be unique. But an empty string,
i.e. "", is also a valid input which means that all of the names of the data objects from that
package will be unchanged. This is helpful if you have a lot of code using one data package
but at a later time decide you need to add a different data package. Make the deconflict string
c("", ".my.new.data") and you don’t have to change any of your old code.

* Make sure you include a separator like . or _ but not a space as the first character of each
element of deconflict_string.

* If only a single package is loaded, there will be no conflicts and by default, deconflict_string

issetto "".

As before, all data elements are loaded as promises which means that they are loaded into memory
only when called.

Usage

project_data(path, deconflict_string = "")

rec_get_deps 15

Arguments

path Path or vector of paths to data directory/ies.
deconflict_string
Character vector used to disambiguate objects from packages in path, Default:

Value

loads data as promises as a side effect

See Also

cli_abort,cli_alert read_delim, cols path, path_file pmap, map str_detect, str_extract,
str_remove, str_replace filter, pull, arrange, slice as_tibble

rec_get_deps recursively get package dependencies

Description

recursively get package dependencies

Usage

rec_get_deps(

needed,

checked = character(9),

deps = character(0),

catalog = fs::path(Sys.getenv("BLASERTEMPLATES_CACHE_ROOT"), "dependency_catalog.tsv")
)

regenerate_bt_configs Regenerate .Rprofile and .Renviron Files

Description

If you have deleted or otherwise broken your .Rprofile or .Renviron files, you may have difficulty
connecting to the package cache. This function will regenerate both for you. The existing .Rprofile
must be deleted manually. You can choose to archive the old version if you wish. It will be replaced
with the standard .Rprofile from blaseRtemplates. The .Renviron file will be modified by removing
the damaged lines and replacing them with the correct ones. You must supply the correct file
path locations to your cache directory and project directory, otherwise your R installation will be
configured incorrectly.

Usage

regenerate_bt_configs(cache_path, project_path)

16 report_template_rmd

Arguments

cache_path path to the cache directory
project_path path to the projects directory

Value

nothing

See Also

file_access, path, copy, path_package cli_abort, cli_alert str_detect, str_replace

regenerate_git_commands
Regenerate a Git Commands File

Description

Since this file is ignored by git, you will have to regenerate it when forking a repository. This
function writes the template file to your R directory as "regenerated_git_commands.R".

Usage

regenerate_git_commands()

Value

nothing

report_template_rmd Make an Rimd Report from the Saved Template

Description

Shortcut function to save the blaseRtemplates report template in Rmd format within an Rmd folder.

Usage

report_template_rmd(report_name = NULL)

Arguments

report_name Name for the Rmd file, Default: NULL

reset_prompt 17

Details

Makes a new Rmd file with the supplied file name

Value

Returns nothing

See Also

str_detect cli_alert create, path use_template

reset_prompt Reset Your Console Prompt

Description

The prompt package adds a nice feature but has some limitations, namely, that it does not respect
changing git branches and has to be manually re-called. This defeats the purpose. Blasertemplates
git functions automoatically call prompt to change the prompt label when switching branches, but
this will not happen if you change branches using the terminal, the git panel or other git branching
functions. Therefore this function is provided to manually reset your prompt to the current branch.

Usage

reset_prompt()

Value

nothing

See Also

set_prompt,prompt_git

update_dependency_catalog
update the dependency catalog

Description

update the dependency catalog

Usage

update_dependency_catalog()

18 write_project_library_catalog

update_package_catalog
rewrite/update the package catalog

Description

rewrite/update the package catalog

Usage
update_package_catalog()

write_project_library_catalog
Write A New Project Library Catalog

Description

In the current version of blaseRtemplates, the package library is cached at the location designated

by the environment variable "BLASERTEMPLATES_CACHE_ROOT". There is a single cache for

all users and projects. The cache holds the binary software used by each package. The packages
for each project are connected to the cache by symlinks. The cache is versioned so that different
projects can use different versions if desired. Use this function to write a tab-delimited file listing
the packages used by each project.

This file will be written to the "library_catalogs" directory within each project. The filename incor-
porates the user name so everyone working on the project will have their own. Use get_new_library()
to adopt a new version of all packages

Usage

write_project_library_catalog()

Value

returns nothing

Index

activates, 12
arrange, 15
as_tibble, 15

cache_fun, 2

catch_blasertemplates_root, 3

cli_abort, 15, 16
cli_alert, 4, 15-17
cols, 15

copy, 4, 16
create, 4, 5,17

defer, 11
dir_1s, 4

establish_new_bt, 3

file_access, 4, 16
filter, 15
find_unlinked_packages, 4
fix_another_library, 5

get_all_deps, 5
get_new_library, 6
git_branch, 7,9
git_commit, 8, 9
git_easy_branch, 7
git_push_all, 7
git_rewind_to, 8
git_safe_merge, 8
git_stash, 9
git_update_branch, 9
gitcreds_get, 6
gitcreds_set, 6

hash_fun, 9
hash_n_cache, 10

initialize_github, 10
initialize_package, 11
initialize_project, 11

19

install_one_package, 12
is_interactive, 11
isAvailable, /1

link_deps, 13
link_one_new_package, 13

map, 15

path, 4, 5, 15-17
path_file, 4, 5,15
path_math, 5
path_package, 4, 16
pmap, 15
proj_utils, 4
project_data, 14
prompt_git, 17
pull, 5, 15

read_delim, 5, 15
rec_get_deps, 15
regenerate_bt_configs, 15
regenerate_git_commands, 16
report_template_rmd, 16
reset_prompt, 17

set_prompt, 17
slice, 15
str_detect, 4, 15-17
str_extract, 15
str_remove, 15
str_replace, 4, 15, 16

update_dependency_catalog, 17
update_package_catalog, 18
use_rstudio(), 12
use_template, 11, 17

write_project_library_catalog, 18

	cache_fun
	catch_blasertemplates_root
	establish_new_bt
	find_unlinked_packages
	fix_another_library
	get_all_deps
	get_new_library
	gitcreds_set
	git_easy_branch
	git_push_all
	git_rewind_to
	git_safe_merge
	git_update_branch
	hash_fun
	hash_n_cache
	initialize_github
	initialize_package
	initialize_project
	install_one_package
	link_deps
	link_one_new_package
	project_data
	rec_get_deps
	regenerate_bt_configs
	regenerate_git_commands
	report_template_rmd
	reset_prompt
	update_dependency_catalog
	update_package_catalog
	write_project_library_catalog
	Index

