Package 'DAseq'

Title: Detecting regions of differential abundance between scRNA-seq datasets
Description: DA-seq is a multiscale approach for detecting DA subpopulations. In contrast to clustering based approaches, our method can detect DA subpopulations that do not form well separated clusters. For each cell, we compute a multiscale differential abundance score measure. These scores are based on the k nearest neighbors in the transcriptome space for various values of k.
Authors: Jun Zhao <[email protected]>
Maintainer: Jun Zhao <[email protected]>
License:
Version: 1.0.0
Built: 2024-11-12 06:29:08 UTC
Source: https://github.com/KlugerLab/DAseq

Help Index


Add DA slot

Description

Add DA region information to the meta.data of a Seurat object

Usage

addDAslot(object, da.regions, da.slot = "da", set.ident = F)

Arguments

object

input Seurat object

da.regions

output from function getDAregion()

da.slot

character, variable name to put in Seurat meta.data, default "da"

set.ident

a logical value to indicate whether to set Idents of the Seurat object to DA information, default False

Value

updated Seurat object


DAseq: Detecting regions of differential abundance between scRNA-seq datasets

Description

DA-seq is a multiscale approach for detecting DA subpopulations. In contrast to clustering based approaches, our method can detect DA subpopulations that do not form well separated clusters. For each cell, we compute a multiscale differential abundance score measure. These scores are based on the k nearest neighbors in the transcriptome space for various values of k.

Author(s)

Jun Zhao, Ariel Jaffe, Henry Li, Ofir Lindenbaum, Xiuyuan Cheng, Yuval Kluger


DA-seq Step 1 & Step 2: select DA cells

Description

Step 1: compute a multiscale score measure for each cell of its k-nearest-neighborhood for multiple values of k. Step 2: train a logistic regression classifier based on the multiscale score measure and retain cells that may reside in DA regions.

Usage

getDAcells(X, cell.labels, labels.1, labels.2, k.vector = NULL,
  save.knn = F, alpha = 0, k.folds = 10, n.runs = 5, n.rand = 2,
  pred.thres = NULL, do.plot = T, plot.embedding = NULL,
  size = 0.5)

Arguments

X

size N-by-p matrix, input merged dataset of interest after dimension reduction.

cell.labels

size N character vector, labels for each input cell

labels.1

character vector, label name(s) that represent condition 1

labels.2

character vector, label name(s) that represent condition 2

k.vector

vector, k values to create the score vector

save.knn

a logical value to indicate whether to save computed kNN result, default False

alpha

numeric, elasticnet mixing parameter passed to glmnet(), default 0 (Ridge)

k.folds

integer, number of data splits used in the neural network, default 10

n.runs

integer, number of times to run the neural network to get the predictions, default 5

n.rand

integer, number of random permutations to run, default 2

pred.thres

length-2 vector, top and bottom threshold on DA measure, default NULL, select significant DA cells based on permutation

do.plot

a logical value to indicate whether to return ggplot objects showing the results, default True

plot.embedding

size N-by-2 matrix, 2D embedding for the cells

size

cell size to use in the plot, default 0.5

Value

a list of results

cell.idx

index of cells used in DA calculation

da.ratio

score vector for each cell

da.pred

(mean) prediction from the logistic regression

da.up

index for DA cells more abundant in condition of labels.2

da.down

index for DA cells more abundant in condition of labels.1

pred.plot

ggplot object showing the predictions of logistic regression on plot.embedding

da.cells.plot

ggplot object highlighting cells of da.cell.idx on plot.embedding


DA-seq Step 3: get DA regions

Description

Cluster the DA cells retained from Step 1 and Step 2 of DA-seq to obtain spatially coherent DA regions.

Usage

getDAregion(X, da.cells, cell.labels, labels.1, labels.2,
  prune.SNN = 1/15, resolution = 0.05, group.singletons = F,
  min.cell = NULL, do.plot = T, plot.embedding = NULL, size = 0.5,
  do.label = F, ...)

Arguments

X

size N-by-p matrix, input merged dataset of interest after dimension reduction

da.cells

output from getDAcells() or updateDAcells()

cell.labels

size N vector, labels for each input cell

labels.1

vector, label name(s) that represent condition 1

labels.2

vector, label name(s) that represent condition 2

prune.SNN

parameter for Seurat function FindNeighbors(), default 1/15

resolution

parameter for Seurat function FindClusters(), default 0.05

group.singletons

parameter for Seurat function FindClusters(), default True

min.cell

integer, number of cells below which a DA region will be removed as outliers, default NULL, use minimum k value in k-vector

do.plot

a logical value to indicate whether to return ggplot objects showing the results, default True

plot.embedding

size N-by-2 matrix, 2D embedding for the cells

size

cell size to use in the plot, default 0.5

do.label

a logical value to indicate whether to label each DA region with text, default False

...

other parameters to pass to Seurat FindClusters()

Value

a list of results

cell.idx

index of cells used in DA calculation

da.region.label

DA region label for each cell from the whole dataset, '0' represents non-DA cells.

DA.stat

a table showing DA score and p-value for each DA region

da.region.plot

ggplot object showing DA regions on plot.embedding


Plot cell labels

Description

Produce a ggplot object with cells on 2D embedding, colored by given labels of each cell.

Usage

plotCellLabel(X, label, cell.col = NULL, size = 0.5, alpha = 1,
  shape = 16, do.label = T, label.size = 4, label.repel = F,
  label.plot = NULL)

Arguments

X

matrix, 2D embedding of each cell for the plot

label

vector, label for each cell

cell.col

string vector, color bar to use for cell labels, default ggplot default

size

numeric, dot size for each cell, default 0.5

alpha

numeric between 0 to 1, dot opacity for each cell, default 1

do.label

a logical value indicating whether to add text to mark each cell label

label.size

numeric, size of text labels, default 4

label.repel

a logical value indicating whether to repel the labels to avoid overlapping, default False

label.plot

cell labels to add text annotations, default NULL, add text for all labels

Value

a ggplot object


Plot a score for each cell

Description

Produce a ggplot object with cells on 2D embedding, colored by a given score for each cell.

Usage

plotCellScore(X, score, cell.col = c("blue", "white", "red"),
  size = 0.5, alpha = 1, shape = 16)

Arguments

X

matrix, 2D embedding of each cell for the plot

score

numeric vector, a single value to color each cell, continuous

cell.col

string vector, color bar to use for "score", defaul c("blue","white","red")

size

numeric, dot size for each cell, default 0.5

alpha

numeric between 0 to 1, dot opacity for each cell, default 1

Value

a ggplot object


Plot da site

Description

Plot da site

Usage

plotDAsite(X, site.list, size = 0.5, cols = NULL)

Arguments

X

matrix, 2D embedding of each cell for the plot

site.list

list, a list of cell indices for each site to plot

size

numeric, dot size for each cell, default 0.5

cols

string vector, color bar to use for each site, default ggplot default


Run STG

Description

Run STG to select a set of genes that separate cells with label.1 from label.2 (other labels)

Usage

runSTG(X, X.labels, label.1, label.2 = NULL, lambda = 1.5,
  n.runs = 5, return.model = T, python.use = "/usr/bin/python",
  GPU = "")

Arguments

X

matrix, normalized expression matrix of all cells in the dataset, genes are in rows, rownames must be gene names

X.labels

numeric vector, specify labels for each cell, must be 0 or 1

label.1

cell label to define markers for

label.2

second cell label to for comparison, if NULL, use all other labels

lambda

numeric, regularization parameter that weights the number of selected genes, a larger lambda leads to fewer genes, default 1.5

n.runs

integer, number of runs to run the model, default 5

return.model

a logical value to indicate whether to return the actual model of STG

python.use

character string, the Python to use, default "/usr/bin/python"

GPU

which GPU to use, default ”, using CPU

Value

a list of results:

markers

a list of data.frame with markers for each DA region

accuracy

a numeric vector showing mean accuracy for each DA region

model

a list of model for each DA region, each model contains:

model

the model of STG of the final run

cells

cell names/indices used to train the model

features

features used to train the model

selected.features

the selected features of the final run

pred

the linear prediction value for each cell from the model


Find local markers

Description

Use Seurat FindMarkers() function to identify genes that distinguish a DA region from its local neighborhood

Usage

SeuratLocalMarkers(object, da.slot = "da", da.region.to.run,
  cell.label.slot, cell.label.to.run, ...)

Arguments

object

input Seurat object

da.slot

character, variable name that represents DA regions in Seurat meta.data, default "da"

da.region.to.run

numeric, which (single) DA region to find local markers for

cell.label.slot

character, variable name that represents cell labeling information in Seurat meta.data to combine with DA information

cell.label.to.run

cell label(s) that represent the local neiborhood for the input DA region

...

parameters passed to Seurat FindMarkers() function

Value

a data.frame of markers and statistics


DA-seq Step 4: Seurat marker finder to characterize DA regions

Description

Use Seurat FindMarkers() function to identify characteristic genes for DA regions

Usage

SeuratMarkerFinder(object, da.slot = "da", da.regions.to.run = NULL,
  ...)

Arguments

object

input Seurat object

da.slot

character, variable name that represents DA regions in Seurat meta.data, default "da"

da.regions.to.run

numeric (vector), which DA regions to find markers for, default is to run all regions

...

parameters passed to Seurat FindMarkers() function

Value

a list of markers for DA regions with statistics


STG local markers Run STG to find a set of genes that separate a given DA region from a local subset of cells.

Description

STG local markers Run STG to find a set of genes that separate a given DA region from a local subset of cells.

Usage

STGlocalMarkers(X, da.regions, da.region.to.run, cell.label.info,
  cell.label.to.run, ...)

Arguments

X

matrix, normalized expression matrix of all cells in the dataset, genes are in rows, rownames must be gene names

da.regions

output from the function getDAregion()

da.region.to.run

numeric, which (single) DA region to find local markers for

cell.label.info

vector, cell labeling information to select the local subset of cells to compare with input DA region

cell.label.to.run

cell label(s) to select from cell.label.info that represent the local neiborhood for the input DA region

lambda

numeric, regularization parameter that weights the number of selected genes, a larger lambda leads to fewer genes, default 1.5

n.runs

integer, number of runs to run the model, default 5

python.use

character string, the Python to use, default "/usr/bin/python"

return.model

a logical value to indicate whether to return the actual model of STG

GPU

which GPU to use, default ”, using CPU

Value

a list of results:

markers

a list of data.frame with markers for each DA region

accuracy

a numeric vector showing mean accuracy for each DA region

model

a list of model for each DA region, each model contains:

model

the model of STG of the final run

features

features used to train the model

selected.features

the selected features of the final run

pred

the linear prediction value for each cell from the model


DA-seq Step 4: STG feature selection

Description

Use STG (stochastic gates) to select genes that separate each DA region from the rest of the cells. For a full description of the algorithm, see Y. Yamada, O. Lindenbaum, S. Negahban, and Y. Kluger. Feature selection using stochastic gates. arXiv preprint arXiv:1810.04247, 2018.

Usage

STGmarkerFinder(X, da.regions, da.regions.to.run = NULL, lambda = 1.5,
  n.runs = 5, return.model = T, python.use = "/usr/bin/python",
  GPU = "")

Arguments

X

matrix, normalized expression matrix of all cells in the dataset, genes are in rows, rownames must be gene names

da.regions

output from the function getDAregion()

da.regions.to.run

numeric (vector), which DA regions to run the marker finder, default is to run all regions

lambda

numeric, regularization parameter that weights the number of selected genes, a larger lambda leads to fewer genes, default 1.5

n.runs

integer, number of runs to run the model, default 5

return.model

a logical value to indicate whether to return the actual model of STG

python.use

character string, the Python to use, default "/usr/bin/python"

GPU

which GPU to use, default ”, using CPU

Value

a list of results:

da.markers

a list of data.frame with markers for each DA region

accuracy

a numeric vector showing mean accuracy for each DA region

model

a list of model for each DA region, each model contains:

model

the model of STG of the final run

features

features used to train the model

selected.features

the selected features of the final run

pred

the linear prediction value for each cell from the model


Update DA cells

Description

Use different threshold to select DA cells based on an output from getDAcells().

Usage

updateDAcells(X, pred.thres = NULL, force.thres = F, alpha = NULL,
  k.folds = 10, n.runs = 10, cell.labels = NULL, labels.1 = NULL,
  labels.2 = NULL, do.plot = T, plot.embedding = NULL, size = 0.5)

Arguments

X

output from getDAcells()

pred.thres

length-2 vector, top and bottom threshold on DA measure, default NULL, select significant DA cells based on permutation

force.thres

a logical value to indicate whether to forcefully use pred.thres without considering significance, default False

alpha

set this parameter to not NULL to rerun Logistic regression

do.plot

a logical value to indicate whether to return ggplot objects showing the results, default True

plot.embedding

size N-by-2 matrix, 2D embedding for the cells

size

cell size to use in the plot, default 0.5

Value

a list of results with updated DA cells


t-SNE embedding of the melanoma dataset

Description

A matrix containing 2D t-SNE embedding of the melanoma dataset

Usage

X.2d.melanoma

Format

An object of class matrix with 16291 rows and 2 columns.

Source

https://www.sciencedirect.com/science/article/pii/S0092867418313941 Sade-Feldman, Moshe, et al. (Cell. 2018)


Sample label information

Description

A dataset containing information of each sample, indicating whether this sample is a "responder" (R) or a "non-responder" (NR)

Usage

X.label.info

Format

a data.frame with 48 rows and 2 columns

label

sample label, matching with labels in X.label.melanoma

condition

condition of the sample label, either R or NR

Source

https://www.sciencedirect.com/science/article/pii/S0092867418313941 Sade-Feldman, Moshe, et al. (Cell. 2018)


Cell sample labels of the melanoma dataset

Description

A string vector with the length equal to number of cells, indicating sample labels of each cell: which sample each cell comes from

Usage

X.label.melanoma

Format

An object of class character of length 16291.

Source

https://www.sciencedirect.com/science/article/pii/S0092867418313941 Sade-Feldman, Moshe, et al. (Cell. 2018)


Top 10 PCs of the melanoma dataset

Description

A dataset containing the top 10 PCs (principal components) of the melanoma dataset

Usage

X.melanoma

Format

An object of class matrix with 16291 rows and 10 columns.

Source

https://www.sciencedirect.com/science/article/pii/S0092867418313941 Sade-Feldman, Moshe, et al. (Cell. 2018)